Question 1
1)
As it is mentioned in Bishop chapter 9 section 3 the relationship between these two methods

are below:

e the K-means method can cluster spherical data appropriately while the EM can work

well on elliptical data either.

e k-means performs hard assignment of data point to cluster in which each data is as-
sociated uniquely with one cluster but EM method makes soft assignment based on
posterior in which each cluster have wight (probability) that indicate responsibility of

that cluster to create data X

¢ Yes on the some limits these two algorithms work similar and the limits are
below: lets first get some intuition of whats going on:
Intuition
as we said K-means work fine on spherical data so we will assume that data are spherical
(we will see it when we write equations we will choose ¥ to be a constant times Identity
matrix which means data are distributed spherical around the p). so as we know when
the variance of one Gaussian model goes to zero the model shrink around the mean
so it is some how the hard assignment on data like k-means and the log likelihood
function increases so if we choose variance small and the data be spherical the GMM
(EM) algorithm will work similar to k-means.
limits
Assume Gaussian Mixture model in which the co-variance matrices are multiplication
of a constant to Identity matrix so they are like ¥ = ¢/ where ¢ can be presentation of
radios of sphere around mean.

so distribution is like below:
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so the posterior distribution of responsibility of each component will be:
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by applying eq(1) we get:
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as € — () so probability obtained from normal distribution goes to zero except for the
component that x, — p; (notice that in such case we assumed that there is a data
that is equal to g more safe to say that we choose closest data to mean as representation
of mean so in such case the responsibility of that component goes to to one so it's like
hard assignment in k-means method.

take the x; closest to y; among other p so we have:
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for closest to py to x, we can assume Ak, go to zero so term is one and for others the

term is zero so we have:
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it’s like hard assignment in k-means method.
80 Y(Z, 5) — 1y i as we know the likelihood function of EM-estimator is
n=N k=K
Ez(InP(X, Z|p, £,10) = Y~ 3~ A(Zns){Inm + InN (za|p, )} (9)
n=l k=l
where y(Z,, ) = E[Z, )
by replacing and applying logarithm to parameters we have :
MAXIMIZEEz[InP(X, Z|p, X. 11 = (10)
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MAXIMIZE Y " y(Zas){Inmx + InN (za|p, £)} (11)
n=1 k=1
€e—r00 => (12)
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MAXIMIZE Y Y ras{lnmi + InN(za|p, £)} (13)
n=1 k=1
now 7 is obtained under condition mentioned maximization is equal to : (14)
n=N k=K
minimize Z Z s |zn = pel*} (15)
n=1 k=1

eq(15) is exactly the objective function in k-means method v
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Question 3)

1)

As it’s binomial distribution it’s easy to obtain:

2)
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As we know from previous question for E-step we have :
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As we know the equation above is propto so we need to normalize it that it adds up to one:
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For writing M-step we have to maximize equation below:
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