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Reasons	to	study	neural	computation

• Neuroscience:	To	understand	how	the	brain	actually	works.
– Its	very	big	and	very	complicated	and	made	of	stuff	that	dies	when	you	poke	
it	around.	So	we	need	to	use	computer	simulations.

• AI:	To	solve	practical	problems	by	using	novel	learning	algorithms	
inspired	by	the	brain
– Learning	algorithms	can	be	very	useful	even	if	they	are	not	how	the	brain	
actually	works.
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A	typical	cortical	neuron

• Gross	physical	structure:
– There	is	one	axon	that	branches
– There	is	a	dendritic	tree	that	collects	input	from	other	neurons.

• Axons	typically	contact	dendritic	trees	at	synapses
– A	spike	of	activity	in	the	axon	causes	charge	to	be
injected	into	the	post-synaptic	neuron.

• Spike	generation:
– There	is	an	axon	hillock	that	generates	outgoing	spikes	whenever	enough	charge	
has	flowed	in	at	synapses	to	depolarize	the	cell	membrane.
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Binary	threshold	neurons

• McCulloch-Pitts	(1943):	influenced	Von	Neumann.
– First	compute	a	weighted	sum	of	the	inputs.
– send	out	a	spike	of	activity	if	the	weighted	sum	exceeds	a	threshold.
– McCulloch	and	Pitts	thought	that	each	spike	is	like	the	truth	value	of	a	
proposition	and	each	neuron	combines	truth	values	to	compute	the	truth	
value	of	another	proposition!
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A	better figure
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• A threshold unit
– “Fires” if the weighted sum of inputs and the “bias” T is positive
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McCulloch-Pitts	neuron:	binary	threshold
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Neural	nets	and	the brain
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• Neural	nets	are	composed	of	networks	of computational	models	of	
neurons	called	perceptrons
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The perceptron
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• A	 threshold unit
– “Fires” if the weighted sum of inputs exceeds a	threshold
– Electrical	engineers	will	call	this	a	threshold	gate

• A	basic	unit	of	Booleancircuits
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The	“soft”	perceptron (logistic)
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• A	“squashing”	function	instead	of	a	threshold		at	the	output
– The	sigmoid	“activation”	replaces	the	threshold

• Activation:	acts	on	the	weighted		combination	of	inputs	(and	threshold)
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Sigmoid	neurons

• These	give	a	real-valued	output	that	is	a	smooth	and	bounded	
function	of	their	total	input.

• Typically	they	use	the	logistic	function
– They	have	nice	derivatives.

11



Other “activations”
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• Does	not	always	have	to	be	a	squashing	function
– We	will	hear	more	about	activations	later
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The	history	of	perceptrons

• They	were	popularised by	Frank	Rosenblatt	in	the	early	1960’s.
– They	appeared	to	have	a	very	powerful	learning	algorithm.
– Lots	of	grand	claims	were	made	for	what	they	could	learn	to	do.

• In	1969,	Minsky	and	Papert published	a	book	called	“Perceptrons”	
that	analyzed	what	they	could	do	and	showed	their	limitations.
– Many	people	thought	these	limitations	applied	to	all	neural	network	models.

47



What	binary	threshold	neurons	cannot	do

• A	binary	threshold	output	unit	cannot	even	tell	if	two	single	bit	
features	are	the	same!
• A	geometric	view	of	what	binary	threshold	neurons	cannot	do
• The	positive	and	negative	cases	cannot	be	separated	by	a	plane
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What	binary	threshold	neurons	cannot	do

• Positive	cases	(same):	(1,1)->1;	(0,0)->1
• Negative	cases	(different):	(1,0)->0;	(0,1)->0
• The	four	input-output	pairs	give	four	inequalities	that	are	impossible	
to	satisfy:
– w1	+w2	≥θ
– 0	≥θ
– w1	<θ
– w2	<θ
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Networks	with	hidden	units

• Networks	without	hidden	units	are	very	limited	in	the	input-output	
mappings	they	can	learn	to	model.
– More	layers	of	linear	units	do	not	help.	Its	still	linear.
– Fixed	output	non-linearities are	not	enough.

• We	need	multiple	layers	of	adaptive,	non-linear	hidden	units.	But	
how	can	we	train	such	nets?
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The	multi-layer perceptron
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• A	network	of	perceptrons
– Generally	“layered”



Feed-forward	neural	networks

• Also	called	Multi-Layer	Perceptron	(MLP)
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MLP	with	single	hidden	layer

55

• Two-layer	MLP	(Number	of	layers	of	adaptive	weights	is	counted)
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Beyond	linear	models
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Defining “depth”
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• What	is	a	“deep”	network



Deep Structures
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• In	any	directed	network	of	computational		elements	with	input	source	
nodes	and	output		sink	nodes,	“depth”	is	the	length	of	the		longest	
path	from	a	source	to	a	sink

• “Deep” [ Depth > 2

• Left: Depth =2. Right: Depth =3



The	multi-layer perceptron
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N.Net

• Inputs	are	real	or	Boolean	stimuli
• Outputs	are	real	or	Boolean	values

– Can	have	multiple	outputs	for	a	single	input
• What	can	this	network	compute?

– What	kinds	of	input/output	relationships	can	it	model?



MLPs	approximate functions
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• MLP s	can	compose	Boolean	functions
• MLPs can	compose	real-valued	functions
• What	are	the	limitations?



MLP

• Multi-layer	Perceptrons as	universal	Boolean	functions	
– The	need	for	depth	

• MLPs	as	universal	classifiers
– The	need	for	depth	

• MLPs	as	universal	approximators

• A	discussion	of	optimal	depth	and	width
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MLP

• Multi-layer	Perceptrons as	universal	Boolean	functions	
– The	need	for	depth	

• MLPs	as	universal	classifiers
– The	need	for	depth	

• MLPs	as	universal	approximators

• A	discussion	of	optimal	depth	and	width
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Multi-layer	Perceptrons as	
universal Boolean	functions
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AND	&	OR	networks
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• For	-1	and	1	inputs:



The perceptron as a Boolean gate
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• A perceptron	can	model	any simple binary	Boolean	gate
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The	perceptron	is	not enough
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Multi-layer	perceptron XOR
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Multi-layer perceptron
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• MLPs	can	compute	more	complex	Boolean	functions
• MLPs	can	compute	any	Boolean	function

– Since	they	can	emulate	individual	gates

• MLPs	are	universal	Boolean	functions



MLP	as	Boolean Functions
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• MLPs	are	universal	Boolean	functions
– Any	function	over	any	number	of	inputs	and	any	number		of	outputs

• But	how	many	“layers”	will	they	need?



How	many	layers	for	aBoolean	MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth	table	shows	all	input	
combinations		for	which	output	is	1

• Expressed	in	disjunctive	normal	form

y = nì&nì'X0Xïnìñ	+nì&X'nì0XïXñ		+nì&X'X0nìïnìñ+
X&nì'nì0nìïXñ +	X&nì'X0XïXñ +	X&X'nì0nìïXñ
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How	many	layers	for	aBoolean	MLP?
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How	many	layers	for	aBoolean	MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

• Any	truth	table	can	be	expressed	in	this	manner!
• A	one-hidden-layer	MLP	is	a	Universal	Boolean	Function
• But	what	is	the	largest	number	of	perceptrons required	in	the		
single	hidden	layer	for	an	N-input-variable	function?

y = nì&nì'X0Xïnìñ	+nì&X'nì0XïXñ		+nì&X'X0nìïnìñ+
X&nì'nì0nìïXñ +	X&nì'X0XïXñ +	X&X'nì0nìïXñ

X' X0 Xï XñX&



Using	deep	network:	Parity	function	on	N	inputs
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• Simple	MLP	with	one	hidden	layer:

2tó& Hidden	units

s + 2 2tó& + 1Weights	and	biases
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• Simple	MLP	with	one	hidden	layer:

• ) = n& ⊕ n' ⊕⋯⊕nt

n& n' n0 nï

3(s − 1) Nodes

9(s − 1)Weights	and	biases

Depth	is	linear	in	s

2tó& Hidden	units

s + 2 2tó& + 1Weights	and	biases

The	actual	number	of	parameters	in	a	network is	the	number	that	
really	matters	in	software	or	hardware		implementations

Using	deep	network:	Parity	function	on	N	inputs



Network	size:	summary	

• An	MLP	is	a	universal	Boolean	function	
• But	can	represent	a	given	function	only	if	

– It	is	sufficiently	wide	
– It	is	sufficiently	deep	
– Depth	can	be	traded	off	for	(sometimes)	exponential	growth	of	the	width	of	
the	network	

• Optimal	width	and	depth	depend	on	the	number	of	variables	and	the	
complexity	of	the	Boolean	function	
– Complexity:	minimal	number	of	terms	in	DNF	formula	to	represent	it	
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Summary:	Wide	vs.	deep	network
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• MLP	with	a	single	hidden	layer	is	a	universal	Boolean	function

• Even	a	network	with	a	single	hidden	layer	is	a	universal	Boolean	machine	
– But	a	single-layer	network	may	require	an	exponentially	large	number	of	
perceptrons

• Deeper	networks	may	require	far	fewer	neurons	than		shallower	
networks
– Could	be	exponentially	smaller



MLPs	as	universal	classifiers

100



MLP

• Multi-layer	Perceptrons as	universal	Boolean	functions	
– The	need	for	depth	

• MLPs	as	universal	classifiers
– The	need	for	depth	

• MLPs	as	universal	approximators

• A	discussion	of	optimal	depth	and	width
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Composing	complicated “decision”		boundaries
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• Build	a	network	of	units	with	a	single	output		that	fires	if	the	input	is	
in	the	coloured	area

x1

x2
Can	now	be	composed	into		“networks”	to	

compute	arbitrary		classification	“boundaries”



Booleans	over	the reals
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• The	network	must	fire	if	the	input	is	in	the	coloured	area

x1

x2

x1x2



Booleans	over	the reals
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• The	network	must	fire	if	the	input	is	in	the	coloured	area

x1

x2

x1x2



Booleans	over	the reals
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• The	network	must	fire	if	the	input	is	in	the	coloured	area

x1

x2

x1x2



Booleans	over	the reals
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• The	network	must	fire	if	the	input	is	in	the	coloured	area

x1

x2

x1x2



Booleans	over	the reals
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• The	network	must	fire	if	the	input	is	in	the	coloured	area

x1x2

x1

x2



Booleans	over	the reals
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• The	network	must	fire	if	the	input	is	in	the	coloured	area

AND

y1 y2 y3 y4 y5

*B, ≥ 5

t

,p&

x1x2



More	complex	decision boundaries
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• Network	to	fire	if	the	input	is	in	the	yellow	area
– “OR”	two	polygons
– A	third	layer	is	required

x2

x1

AND AND

OR

x1 x2



Complex	decision boundaries

113

AND

OR

x1 x2

• Can	compose	arbitrarily	complex	decision	boundaries
– With only one hidden layer!
– How?
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MLP	with	Different	Number	of	Layers

Structure Type	of	Decision	Regions Interpretation Example	of	region

Single Layer	
(no	hidden	layer)

Half space Region	found	by	a	
hyper-plane

Two Layer	
(one	hidden	layer)

Polyhedral	(open or	
closed)	region

Intersection	of	half
spaces

Three Layer	
(two	hidden	layers)

Arbitrary	regions Union	of	polyhedrals

MLP	with	unit	step	activation	function

Decision	region	found	by	an	output	unit.



Composing	a	squaredecision	boundary

116

4

2

2

2

2

• The	polygon	net
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Composing	a	squaredecision	boundary
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• The	polygon net

*y4 ≥ 5	?
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Composing	a pentagon
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• The	polygon net

*y4 ≥ 6	?
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16 sides
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• What	are	the	sums	in	the	different	regions?



64 sides
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• What	are	the	sums	in	the	different	regions?



1000 sides
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• What	are	the	sums	in	the	different	regions?



Polygon net
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• Increasing	the	number	of	sides	reduces	the	area	outside	the polygon	
that	have	N/2	<	Sum	<	N



Composing	a circle
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N

N/2

• The	circle	net
– Very	large	number	of	neurons
– Sum	is	N	inside	the	circle,	N/2	outside	almost	everywhere
– Circle	can	be	at	any	location

*y4 ≥ N	?

≥

4p&



Composing	a circle
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• The	circle	net
– Very	large	number	of	neurons
– Sum is N/2 inside the circle, 0 outside almost everywhere
– Circle	can	be	at	any	location

*y4 −	
s

2
≥ 0	?

≥

4p&

−s/2

1

N/2

0



Composing	an	arbitrary figure
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*y4 −	
s

2
ë ≥ 0	?

å≥

4p&

• Just	fit	in	an	arbitrary	number	of	circles
– More	accurate	approximation	with	greater	number	of	smaller	circles
– Can	achieve	arbitrary	precision



MLP:	Universal	classifier
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• MLPs	can	capture	any	classification	boundary
• A	one-layer	MLP	can	model	any	classification	boundary
• MLPs	are	universal	classifiers



Depth	and	theuniversal	classifier
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x2

x1 x1 x2

• Deeper	networks	can	require	far	fewer	neurons



Summary

• Multi-layer	perceptrons are	Universal	Boolean	Machines
– Even	a	network	with	a	single	hidden	layer	is	a	universal	Boolean	machine

• Multi-layer	perceptrons are	Universal	Classification	Functions
– Even	a	network	with	a	single	hidden	layer	is	a	universal	classifier

• But	a	single-layer	network	may	require	an	exponentially	large	
number	of	units	than	a	deep	one

• Deeper	networks	may	require	far	fewer	neurons	than	shallower		
networks	to	express	the	same	function
– Could	be	exponentially	smaller
– Deeper	networks	are	more	expressive
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MLPs	as	universal
approximators

142



MLP

• Multi-layer	Perceptrons as	universal	Boolean	functions	
– The	need	for	depth	

• MLPs	as	universal	classifiers
– The	need	for	depth	

• MLPs	as	universal	approximators

• A	discussion	of	optimal	depth	and	width

143



MLP	as	a	continuous-valued regression
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• A	simple	3-unit	MLP	with	a	“summing”	output	unit	can		
generate	a	“square	pulse”	over	an	input
– Output	is	1	only	if	the	input	lies	between	T1	and	T2
– T1	and	T2	can	be	arbitrarily	specified



MLP	as	a	continuous-valued regression
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• A	simple	3-unit	MLP	can	generate	a	“square	pulse”	over	an	input
• An	MLP	with	many	units	can	model	an	arbitrary	function	over	an	input

– To	arbitrary	precision
• Simply	make	the	individual	pulses	narrower

• A	one-layer	MLP	can	model	an	arbitrary	function	of	a	single	input



For	higher dimensions
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N/ 2

0

+
1

-N/2

• An	MLP	can	compose	a	cylinder
– t

'
in	the	circle,	0	outside



MLP	as	a	continuous-valued function
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• MLPs	can	actually	compose	arbitrary	functions	in	any	number	of		
dimensions!
– Even	with	only	one	layer

• As	sums	of	scaled	and	shifted	cylinders

– To	arbitrary	precision
• By	making	the	cylinders	thinner

– The	MLP	is	a	universal	approximator!



Caution:	MLPs		with	additive output
units	are	universal approximators
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1
2

n

• MLPs	can	actually	compose	arbitrary	functions	in	any	number	of		
dimensions!

• But	explanation	so	far	only	holds	if	the	output		unit	only	performs	
summation
– i.e.	does	not	have	an	additional	“activation”

o = ∑ ℎ,B,
t
,p&



“Proper”	networks:	Outputswith		activations
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x1
x2
x3

xN

sigmoid

tanh

• Output	neuron	may	have	actual	“activation”
– Threshold,	sigmoid,	tanh,	softplus,	rectifier,	etc.

• What	is	the	property	of	such	networks?



Summary

• MLPs	are	universal	Boolean	function
• MLPs	are	universal	classifiers
• MLPs	are	universal	function	approximators

• A	single-layer	MLP	can	approximate	anything	to	arbitrary	precision
– But	could	be	exponentially	or	even	infinitely	wide	in	its	inputs	size

• Deeper	MLPs	can	achieve	the	same	precision	with	far	fewer		
neurons
– Deeper	networks	are	more	expressive
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These	boxes	are functions

2

N.Net
Voice  
signal Transcription N.NetImage Text caption

N.Net
Game  
State Next move

• Take	an input
• Produce	an output
• Can	be	modeled	by	a	neuralnetwork!



Questions

3

N.NetSomething  
odd

Something  
weird

• Preliminaries:
– How	do	we	represent	the	input?

– How	do	we	represent	the	output?

• How do we compose the network that performs	the	requisite function?



Preliminaries	:	The	units	in	the	networks
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• Units	or	neurons
– General	setting,	inputs	are	real	valued

– A	bias ! representing a threshold to trigger the perceptron

– Activation	functions	are	notnecessarily	threshold	functions



Preliminaries	:	Redrawing	the	neuron

5
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• The bias can also be viewed as the weight of another input		
component	that	is	always	set	to1

d 



Learning	problem	

• Given: the architecture of thenetwork

• Training data: A set of input-output pairs

"($), '($)	 , "()), '()) , … , ("(+), '(+))

• We want to find the function , on the input space to get the output
– We consider a neural network as a parametric function ,(";.)

6



What	is	f()?	Typicalnetwork

7

Input
units Output  

units

Hidden units

• We	assume	a“layered”	network	for	simplicity
• Generic terminology

– Wewill refer to the inputs as the input units
– No neurons here – the “input units” are just the inputs

– We refer to the outputs as the output units

– Intermediate	units	are	“hidden”units



First	:	the	structure	of	the	network

8

• We	will	assume	a	feed-forwardnetwork
– No loops: Neuron outputs do not feed back to their inputs directly or		indirectly
– Loopy	networks	are	a	future topic

• Part	of	the	design	of	a	network:	Thearchitecture
– How	many	layers/neurons,	which	neuron	connects	to	which	andhow,	etc.

• For now, assume the architecture of the network is capable of		
representing	the	needed function



What	we	learn	:	The	parameter	of	the	network

9

• Given: the architecture of thenetwork

• The parameters of the network: The weights and biases
– The weights associated with the blue arrows in the picture

• Learning the network: Determining the values of these parameters
such that the network computes the desired function



Problem	setup

• Given: the architecture of thenetwork

• Training data: A set of input-output pairs
"($), '($)	 , "()), '()) , … , ("(+), '(+))

• We want to find the function ,
– We consider a neural network as a parametric function ,(";.)

• We need a loss function to show how penalizes the obtained output
,(";.) when the desired output is '

1

0
1 2344 , "(5);. , '(5)
+

56$
10



Training	an	MLP	

• We define differentiable loss or divergence between the output of the
network and the desired output for the training instances
– And a total error, which is the average divergence over all training instances

• We optimize network parameters to minimize this error

11



Training	an	MLP:	Activation	function

• Learning networks of threshold-activation neurons requires solving a
hard combinatorial-optimization problem
– Because we cannot compute the influence of small changes to the parameters
on the overall error

• Instead we use continuous activation functions to enables us to
estimate network parameters
– This makes the output of the network differentiable w.r.t every parameter in the
network

– The logistic activation neuron actually computes the a posteriori probability of
the output given the input

12



Activation	function

13

• With	threshold,	the	neuron’s	output is	a flat	function	with	zero	derivative	
everywhere,	except	at	0	where	it is	non-differentiable
– Youcan vary the weights a lot without changing the error
– There is no indication of which direction to change the weights to		reduce error



Activation	function

14

+...
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N - 1
N - 1

N

N
N + 1

• Makes the	neuron	differentiable,	with	non-zero	derivativesover	much	of	
the	input space
– Small changes in weight can result in non-negligible changes in output
– This enables us to estimate the parameters using gradient descent		techniques..



Vector notation

15

Given a training of input-output pairs "($), '($)	 , "()), '()) , … , ("(+), '(+))

• "(5) = 8$
5 , 8)

5 , … , 89
5 is the nth input vector

• '(5) = :$
5 , :)

5 , … , :;
5 is the nth desired output

• <(5) = 3$
5 , 3)

5 , … , 3;
5 is the nth vector of actual outputs of the network

• We will sometimes drop the superscript when referring to a specific instance

:$

:;

8$

89



Representing	the input

16

Input
Layer Output  

Layer

Hidden Layers

• Vectors	of numbers
– (or may even be just a scalar, if input layer is of size	1)
– E.g.	vector	of	pixel values
– E.g.	vector	of	speech features
– E.g.	real-valued	vector	representing text

• We will see how this happens later in the course

– Other	real	valued vectors



Representing	the output

17

Input
Layer Output  

Layer

Hidden Layers

• If the desired output is real-valued, no special tricks are necessary
– Scalar	Output	:	single	output neuron

• o	=	scalar	(real value)

– Vector Output : as many output neurons as the dimension of the	desired output
• < = [3$, 3), … , 3>] (vector	of	real	values)



Examples	of	loss functions

18

Square 
error

y1y2y3y4

Div

• For real-valued output vectors, the (scaled) @) divergence is popular

ABB3B ', < = 	
1

2
'	 − < ) = 	

1

2
1(:; − 3;)

)	

�

;

– Squared Euclidean distance between true and desired output
– Note: this is differentiable

FA ', <

F3;
= −(:; − 3;)

GHA ', < = [3$ − :$, 3) 	− :), … , 3> 	− :>]



Representing	the output

19

• If the desired output is binary (is this a cat or not), use		a simple 1/0
representation of the desired output
– 1	=YES	it’s	a cat

– 0	=	NO	it’s	not	a cat.



Non-linearly	separable data

20

83

x1

x2

• Two-dimensional example
– Blue dots (on the floor) on the “red” side

– Red dots (suspended at Y=1)on the “blue” side

– No	line	will	cleanly	separate	the two	colors



Non-linearly	separable	data:	1-Dexample

21

y

• One-dimensional	example	for visualization
– All	(red)	dots	at	Y=1	represent	instances	of	classY=1

– All	(blue)	dots	at	Y=0	are	from	classY=0

– The	data	are	not linearly	separable
• No threshold will cleanly separate red and blue dots



Logistic regression

22

x1

x2

i ii

– It actually computes the probability that the input belongs to class 1

• This	a	neuron with	a sigmoid	activation

Decision: y >0.5?

When	X	is	a	2-D variable



Representing	the output

23

I(J)

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation of
the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability K L = 1 " of class value 1

• Indicating the fact that for actual data, in general a feature vector may occur for both classes, but with
different probabilities

• Is differentiable



Differentiable	Activation

24
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• This	particular	one	has	anice	interpretation



For	binary classifier:	Logistic	regression

25

KLDiv

• For binary classifier with scalar output 3 ∈ 0,1 , : is 0/1, the cross entropy between the
probability distribution [3, 1 − 3] and the ideal output probability [:, 1 − :] is popular

@ :, 3 = −:23O3	 − 1 − : log	(1 − 3)

• Derivative

F@ :, 3

F3
=

−
1

3
	S,	: = 1

1

1 − 3
	S,	: = 0

:

3
3 = I(J)



Multi-class	output: One-hot	representations

• Consider a network that must distinguish if an input is a cat, a dog, a camel, a
hat, or a flower

• For inputs of each of the five classes the desired output is:
Cat : [1	0	0	0	0	]T

dog : [0	1	0	0	0	]T

camel : [0	0	1	0	0	]T

hat : [0	0	0	1	0	]T

flower : [0	0	0	0	1	]T

• For input of any class, we will have a five-dimensional vector output with four
zeros and a single 1 at the position of the class

• This is a one hot vector

26



Multi-class networks

27

Input
Layer Output  

Layer

Hidden Layers

• For	a	multi-class	classifier	with	N	classes,	the one-hot representation	will	have	
N	binary outputs
– An	N-dimensional	binary vector

• The neural network’s output too must ideally be binary (N-1 zeros	and a single 1 in the
right place)

• More	realistically,	it	will	be	aprobability	vector
– N	probability	values	that	sum	to 1.



Vector	activation	example: Softmax

28

• Example:	Softmax	vector activation

Parameters are   
weights
and bias

3U



Vector Activations

29

Input
Layer Output  

Layer

Hidden Layers

• We can also have neuron that have multiple couple outputs
:$, :), … , :V = ,(8$, 8), … , 8;;.)

– Function ,(. ) operates on set of inputs to produce set of outputs
– Modifying a single parameter in.	will affect all outputs



Multi-class	classification: Output

30

Input
Layer Output  

Layer

Hidden Layers

s  
o  
f  
t  
m  
a  
x

• Softmax vector activation is often used at the output of multi-class
classifier nets

JU = 	1XYU
(V)ZY

(5[$)	

�

Y

3U = 	
exp	(JU)
∑ exp	(JY)
�
Y

• This can be viewed as the probability 3U = K `2Z44 = S "



For	multi-class classification
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y1y2y3y4

KLDiv() E

• Desired output : is one hot vector 0	0…1…0	0	0 wit the 1 in the `-th position(for class c)

• Actual output will be probability distribution [3$, 3), … , 3V]

• The cross-entropy between the desired one-hot output and actual output

@ ', < = −1:U23O3U = −23O3a

�

U

• Derivative

F@(', <)

F3U
= 	b

−
1

3a
	,3B	cℎe	`	cℎ	`3fg3hehc

0	,3B	BefZShShO	`3fg3hehc

G<@(', <) = [0	0…
−1

3a
…0	0	]

The slope is negative w.r.t. 3a
Indicates increasing 3a will reduce divergence



For	multi-class classification

32

• Desired output : is one hot vector 0	0…1…0	0	0 wit the 1 in the `-th position(for class c)
• Actual output will be probability distribution [3$, 3), … , 3V]
• The cross-entropy between the desired one-hot output and actual output

@ ', < = −1:U23O3U = −23O3a

�

U

• Derivative
F@(', <)

F3U
= 	b

−
1

3a
	,3B	cℎe	`	cℎ	`3fg3hehc

0	,3B	BefZShShO	`3fg3hehc

G<@(', <) = [0	0…
−1

3a
…0	0	]

Note: when ' = < the  
derivative is not 0

The slope is negative w.r.t. 3a
Indicates increasing 3a will reduce divergence

y1y2y3y4

KLDiv() E



Choosing	cost	function:	Examples

33

} Regression problem
– SSE

} Classification problem
– Cross-entropy

• Binary classification

• Multi-class classification

23445 = −log 3i(j)

23445 = −: 5 log 3 5 − (1 − : 5 ) log(1 − 3 5 )

Output	layer	uses	sigmoid	activation	function

Output	is	found	by	a	softmax layer	3U =
klm

∑ k
lno

npq

3 =
1

1 + es

A =1 A5
+

56$

A5 =
1

2
3 5 − : 5 )

A5 =
1

2
< 5 − ' 5 )

=1 3;
5 − :;

5 )>

;6$

One	dimensional	output

Multi-dimensional	output

:$

:>

8$

89



Problem	setup

• Given: the architecture of thenetwork

• Training data: A set of input-output pairs
"($), '($)	 , "()), '()) , … , ("(+), '(+))

• We need a loss function to show how penalizes the obtained output 3 = ,(";.)
when the desired output is '

A(.) = 1 2344 <(5), '(5)
+

56$

=
1

0
1 2344 , "(5);. , '(5)
+

56$

• Minimize A w.r.t.. that containts XU,Y
; , !Y

[;]
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How	to	adjust	weights	for	multi	layer	networks?

• We need multiple layers of adaptive, non-linear hidden units. But
how can we train such nets?
– We need an efficient way of adapting all the weights, not just the last layer.
– Learning the weights going into hidden units is equivalent to learning
features.

– This is difficult because nobody is telling us directly what the hidden units
should do.

35



Find	the	weights	by	optimizing	the	cost	

36

• Start from random weights and then adjust them iteratively to get lower cost.

• Update the weights according to the gradient of the cost function

Source: http://3b1b.co



How	does	the	network	learn?

37

• Which changes to the weights do improve the most?

• The magnitude of each element shows how sensitive the cost is
to that weight or bias.

GA

GA

Source: http://3b1b.co



Training	multi-layer	networks

38

• Back-propagation
– Training algorithm that is used to adjust weights in multi-layer networks
(based on the training data)

– The back-propagation algorithm is based on gradient descent
– Use chain rule and dynamic programming to efficiently compute gradients


