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❑ Bayesian	Inference,	Conjugate	Prior	and	Parameter	Estimation	

❑ Bernoulli	and	beta	distributions	

❑ Multinomial	and	Dirichlet	distributions	

❑ Gaussian	Distribution	

❑ univariate	and	Multivariate	Gaussian	distribution	

❑ Marginal	and	Conditional	Gaussian	Distribution	

❑ ML	Estimation	of	Gaussian	parameters	

❑ Bayesian	inference	for	the	Gaussian



Bayesian Inference, 
Conjugate Prior, Parameter 
Estimation



Binary	Variables	(1)

• Coin	flipping:	heads=1,	tails=0	

• Bernoulli	Distribution
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Binary	Variables	(2)

• N	coin	flips:	

• Binomial	Distribution
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Binomial	Distribution
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Parameter	Estimation	(1)

• ML	for	Bernoulli	
• Given:		
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Parameter	Estimation	(2)

• Example:	

• 	 Prediction:	all	future	tosses	will	land	heads	up	

• Overfitting	to	D
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Beta	Distribution

• Distribution	over														
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Bayesian	Bernoulli
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The	Beta	distribution	provides	the	conjugate	prior	for	the	
Bernoulli	distribution.



Beta	Distribution
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Prior	·	Likelihood	=	Posterior
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Properties	of	the	Posterior
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As	the	size	of	the	data	set,	N,	increase



Prediction	under	the	Posterior
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What	is	the	probability	that	the	next	coin	toss	will	land	
heads	up?	



Multinomial	Variables
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1-of-K	coding	scheme:



ML	Parameter	estimation

• Given:	

• Ensure																		,	use	a	Lagrange	multiplier,		¸.
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The	Multinomial	Distribution
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The	Dirichlet	Distribution
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Conjugate	prior	for	the	
multinomial	distribution.



Bayesian	Multinomial	(1)
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Bayesian	Multinomial	(2)
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Gaussian Distribution



The	Gaussian	Distribution
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Central	Limit	Theorem	

• The	distribution	of	the	sum	of	N	i.i.d.	random	
variables	becomes	increasingly	Gaussian	as	N	
grows.	

• Example:	N	uniform	[0,1]	random	variables.
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Geometry	of	the	Multivariate	Gaussian
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Moments	of	the	Multivariate	Gaussian	(1)
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thanks	to	anti-symmetry	of	z 



Moments	of	the	Multivariate	Gaussian	(2)
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Partitioned	Gaussian	Distributions
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Partitioned	Conditionals	and	Marginals
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Partitioned	Conditionals	and	Marginals
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Bayes’	Theorem	for	Gaussian	Variables

• Given	

• we	have	

• where
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Maximum	Likelihood	for	the	Gaussian	(1)

• Given	i.i.d.	data																													,	the	log	likelihood	
function	is	given	by	

• Sufficient	statistics
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Maximum	Likelihood	for	the	Gaussian	(2)

• Set	the	derivative	of		the	log	likelihood	function	to	
zero,	

• and	solve	to	obtain	

• Similarly
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Maximum	Likelihood	for	the	Gaussian	(3)
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Under	the	true	distribution	

Hence	define	



Contribution	of	the	N th	data	point,	xN	

Sequential	Estimation
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correction	given	xN	
correction	weight
old	estimate



Bayesian	Inference	for	the	Gaussian	(1)

• Assume	variance	is	known.	Given	i.i.d.	data 
																											,	the	likelihood	function	for 
mean	is	given	by	

• This	has	a	Gaussian	shape	as	a	function	of	mu (but	
it	is	not	a	distribution	over	mu).	
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Bayesian	Inference	for	the	Gaussian	(2)

• Combined	with	a	Gaussian	prior	over	mu,	

• this	gives	the	posterior	

• Completing	the	square	over	mu,	we	see	that
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Bayesian	Inference	for	the	Gaussian	(3)

• …	where	

• Note:
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Bayesian	Inference	for	the	Gaussian	(4)

• Example:																																							for	N = 0, 1, 2 and	
10.
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Bayesian	Inference	for	the	Gaussian	(5)

• Sequential	Estimation	

• The	posterior	obtained	after	observing	N {N-1	data	
points	becomes	the	prior	when	we	observe	the	N th	
data	point.
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Bayesian	Inference	for	the	Gaussian	(6)

• Now	assume	mu	is	known.	The	likelihood	function	
for	 precision	is	given	by	

• This	has	a	Gamma	shape	as	a	function	of	lambda.
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Bayesian	Inference	for	the	Gaussian	(7)

• The	Gamma	distribution
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Bayesian	Inference	for	the	Gaussian	(8)

• Now	we	combine	a	Gamma	prior,																							, 
with	the	likelihood	function	for	lambda	to	obtain	

• which	we	recognize	as																											with	
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Bayesian	Inference	for	the	Gaussian	(9)

• If	both	mu	and	lambda	are	unknown,	the	joint	
likelihood	function	is	given	by	

• We	need	a	prior	with	the	same	functional	
dependence	on	mu and	lambda.
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Bayesian	Inference	for	the	Gaussian	(10)

• The	Gaussian-gamma	distribution
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•	Quadratic	in mu.	
•	Linear	in	lambda.

•	Gamma	distribution	over	lambda.	
•	Independent	of	mu.	



Any Questions?!


