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Basic Concepts and Notation



Basic Notation

- By x € R", we denote a vector with n entries.
X1
X2
Xn

- By A € R™*" we denote a matrix with m rows and n columns, where the entries of A are
real numbers.

ai1 a2 - ain o ’ — af —

.. _ T __
A a a» an I T A a?
. | ;

dml am2 *** Admn - a; -
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The Identity Matrix

The identity matrix, denoted | € R"*", is a square matrix with ones on the diagonal and zeros
everywhere else. That is,

L=

PT0 i)

It has the property that for all A € R™*",

Al = A=A

5/57



Diagonal matrices

A diagonal matrix is a matrix where all non-diagonal elements are 0. This is typically denoted
D = diag(d1, da, . .., dp), with
C(d =)
Di = { 0 i4)

Clearly, I = diag(1,1,...,1).
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Vector-Vector Product

- inner product or dot product

n
¥2 4
xTyER:[X1 Xa o Xp | : :ZXiYi-
' i=1
Yn
- outer product
X1 X1y1 X1y2 -+ X1Yn

X2 Xoy1 Xoy2 -+ X2Yn
xy! e R™" = : (vi v2 = yn]= . . .

Xm XmYyl1 XmY2 - XmYn
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Matrix-Vector Product

- If we write A by rows, then we can express Ax as,

T T

— alT — alTx
— 32 — 32 X
y = AX = X =
T T
— a, — amX
- If we write A by columns, then we have:
| 1 .
X2
y=Ax=| al a° a" . = a | xx+ | &
Xn

y is a linear combination of the columns of A.

X2+ ...
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Matrix-Vector Product
It is also possible to multiply on the left by a row vector.

- If we write A by columns, then we can express x ' A as,

yT:XTA:XT 31

a2 .. a" :[xTa1 x'a

- expressing A in terms of rows we have:

— o —
T T — a —
y:XA:[X]_ X Xm] :
— AT —
= x| — ] —J4xe|— ] —]4etom[— al —]

yT is a linear combination of the

rows of A.
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Matrix-Matrix Multiplication (different views)

1. As a set of vector-vector products

— a] — a/ bt alb* .- albP
_ a7 Tpl Tp2 .. ATpp
a, ’1 |2 |p a, b* ay b a, b
C=AB = bt b2 ... b =
T I | Tl TR . aT
— a, — apb* apb® -+ a,bf
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Matrix-Matrix Multiplication (different views)

2. As a sum of outer products

— blT —
| | o -
C=AB=| at & a" _ :Za’b,-T .
| ] =
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Matrix-Matrix Multiplication (different views)

3. As a set of matrix-vector products.
C=AB=A| b b> - bP | =| Abt Ab> --- AbP |. (2)

Here the ith column of C is given by the matrix-vector product with the vector on the right,
¢; = Ab;. These matrix-vector products can in turn be interpreted using both viewpoints
given in the previous subsection.
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Matrix-Matrix Multiplication (different views)

4. As a set of vector-matrix products.
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Matrix-Matrix Multiplication (properties)

- Associative: (AB)C = A(BC).
- Distributive: A(B+ C) = AB+ AC.
- In general, not commutative; that is, it can be the case that AB # BA. (For example, if

A€ R™" and B € R"*9, the matrix product BA does not even exist if m and g are not
equall)
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Operations and Properties



The Transpose

The transpose of a matrix results from “flipping” the rows and columns. Given a matrix
A € R™*" its transpose, written AT € R"*™ is the n x m matrix whose entries are given by

(A7) = Aji.
The following properties of transposes are easily verified:
- (AT)T = A
- (AB)T = BTAT
-(A+B)T =AT +BT
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Trace

The trace of a square matrix A € R"*", denoted trA, is the sum of diagonal elements in the
matrix:
n
trA = Z Aji.
i=1

The trace has the following properties:
- For Ae R™" 1A = trAT.
- For A,B € R™" tr(A + B) = trA + trB.
For Ac R™" t € R, tr(tA) = t trA.
- For A, B such that AB is square, trAB = trBA.

For A, B, C such that ABC is square, trABC = trBCA = trCAB, and so on for the
product of more matrices.
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Norms

A norm of a vector ||x|| is informally a measure of the “length” of the vector.

More formally, a norm is any function f : R" — R that satisfies 4 properties:

1.

For all x € R”, f(x) > 0 (non-negativity).

2. f(x) =0 if and only if x = 0 (definiteness).
3.
4. Forall x,y € R", f(x+y) < f(x) + f(y) (triangle inequality).

For all x € R”, t € R, f(tx) = |t|f(x) (homogeneity).
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Examples of Norms

The commonly-used Euclidean or £, norm,

Ixll2 =

The ¢1 norm,

Il =3 I
i=1
The ¢4 norm,
||x]|co = max; |x;]|.

In fact, all three norms presented so far are examples of the family of ¢, norms, which are
parameterized by a real number p > 1, and defined as

n 1/p
lIx]lp = <Z |Xi|p> :
i=1
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Matrix Norms

Norms can also be defined for matrices, such as the Frobenius norm,

Em: Z A2 = \[tr(ATA).

i=1 j=1

IAllF =

Many other norms exist, but they are beyond the scope of this review.
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Linear Independence

A set of vectors {x1,x2,...x,} C R™ s said to be (linearly) dependent if one vector
belonging to the set can be represented as a linear combination of the remaining vectors; that is,

if
n—1
Xp = E QjXj
i=1

for some scalar values a1, ..., a,-1 € R; otherwise, the vectors are (linearly) independent.
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Linear Independence

A set of vectors {x1,x2,...x,} C R™ s said to be (linearly) dependent if one vector
belonging to the set can be represented as a linear combination of the remaining vectors; that is,

if
n—1
=3 o
i=1
for some scalar values a1, ..., a,-1 € R; otherwise, the vectors are (linearly) independent.
Example:
1 4 2
X1 = 2 X = 1 X3 = -3
3 5 -1
are linearly dependent because x3 = —2x; + xo.
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Rank of a Matrix

- The column rank of a matrix A € R™*" is the size of the largest subset of columns of A
that constitute a linearly independent set.
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Rank of a Matrix

- The column rank of a matrix A € R™*" is the size of the largest subset of columns of A
that constitute a linearly independent set.

- The row rank is the largest number of rows of A that constitute a linearly independent set.
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Rank of a Matrix

- The column rank of a matrix A € R™*" is the size of the largest subset of columns of A
that constitute a linearly independent set.

- The row rank is the largest number of rows of A that constitute a linearly independent set.

- For any matrix A € R™*" it turns out that the column rank of A is equal to the row rank
of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A,
denoted as rank(A).
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Properties of the Rank

- For A€ R™*" rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full
rank.
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Properties of the Rank

- For A€ R™*" rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full
rank.

- For A€ R™" rank(A) = rank(AT).

- For Ae R™" B € R"™P, rank(AB) < min(rank(A), rank(B)).
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Properties of the Rank

For A € R™*" rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full
rank.

For A € R™" rank(A) = rank(AT).

For Ae R™" B e R"™P, rank(AB) < min(rank(A), rank(B)).

For A, B € R™*", rank(A + B) < rank(A) + rank(B).
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The Inverse of a Square Matrix

- The inverse of a square matrix A € R"*" is denoted A~1, and is the unique matrix such
that
ATTA = = AATL
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- We say that A is invertible or non-singular if A1 exists and non-invertible or singular
otherwise.
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The Inverse of a Square Matrix

- The inverse of a square matrix A € R"*" is denoted A~1, and is the unique matrix such
that
ATTA = = AATL

- We say that A is invertible or non-singular if A1 exists and non-invertible or singular
otherwise.

- In order for a square matrix A to have an inverse A~1, then A must be full rank.

- Properties (Assuming A, B € R"*" are non-singular):
(A=A
- (AB)"!=B1A
- (A1) = (AT)~L. For this reason this matrix is often denoted A= 7.
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Orthogonal Matrices

- Two vectors x, y € R" are orthogonal if x"y = 0.
- A vector x € R" is normalized if ||x||2 = 1.

- A square matrix U € R"*" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).
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Orthogonal Matrices

Two vectors x, y € R" are orthogonal if x"y = 0.

A vector x € R" is normalized if ||x||2 = 1.

- A square matrix U € R"*" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

- Properties:
- The inverse of an orthogonal matrix is its transpose.

vlu=1=uU".
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Orthogonal Matrices

Two vectors x, y € R" are orthogonal if x"y = 0.

A vector x € R" is normalized if ||x||2 = 1.

- A square matrix U € R"*" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

- Properties:
- The inverse of an orthogonal matrix is its transpose.

utu=1=uU".
- Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,
1Ux][2 = [Ix]2

for any x € R”, U € R"*" orthogonal.

25 /57



Span and Projection

- The span of a set of vectors {x1, X2, ...x,} is the set of all vectors that can be expressed as
a linear combination of {x1,...,x,}. That is,

span({xy,...xp}) = {v LV = Za,-x,-, aj € R} .

i=1
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Span and Projection

- The span of a set of vectors {x1, X2, ...x,} is the set of all vectors that can be expressed as

a linear combination of {x1,...,x,}. That is,
n
span({xy,...xp}) = {v LV = Za,-x,-, aj € R} .
i=1
- The projection of a vector y € R™ onto the span of {xi,...,x,} is the vector

v € span({xi,...xp}), such that v is as close as possible to y, as measured by the
Euclidean norm [|v — y||2.

PI‘Oj(y; {X17 ce XN}) = argminvespan({xl,...,xn})H.y - VH2'
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Range

- The range or the columnspace of a matrix A € R™*" denoted R(A), is the the span of
the columns of A. In other words,

R(A) ={veR":v=Ax,x € R"}.
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Range

- The range or the columnspace of a matrix A € R™*" denoted R(A), is the the span of
the columns of A. In other words,

R(A) ={veR":v=Ax,x € R"}.

- Assuming A is full rank and n < m, the projection of a vector y € R™ onto the range of A
is given by,
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Range

- The range or the columnspace of a matrix A € R™*" denoted R(A), is the the span of
the columns of A. In other words,

R(A) ={veR":v=Ax,x € R"}.

- Assuming A is full rank and n < m, the projection of a vector y € R™ onto the range of A
is given by,
Proj(y; A) = argminveR(A)Hv =yl = A(ATA)*lATy )

- When A contains only a single column, a € R™, this gives the special case for a projection

of a vector on to a line:
a7

. a
Proj(y;a) = —7_v
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Null space

The nullspace of a matrix A € R™*", denoted N(A) is the set of all vectors that equal 0 when
multiplied by A, i.e.,
N(A) ={x e R": Ax = 0}.
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Null space

The nullspace of a matrix A € R™*", denoted N(A) is the set of all vectors that equal 0 when
multiplied by A, i.e.,

N(A) ={x e R": Ax = 0}.
It turns out that

{W; w=u-+v,ueR(A) v eN(A)} = R" and R(AT) N N(A) = {0} .

In other words, R(AT) and A/(A) are disjoint subsets that together span the entire space of R”.
Sets of this type are called orthogonal complements, and we denote this R(AT) = N(A)*.
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The Determinant

The determinant of a
|A| or det A.
Given a matrix

square matrix A € R™" is a function det : R"*" — R, and is denoted

consider the set of points S C R” as follows:

n
Sz{veR”:V:Za;a;whereoga,-gl,i:1,...,n}.
i=1

The absolute value of the determinant of A, it turns out, is a measure of the “volume” of the set

S.
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The Determinant: intuition
For example, consider the 2 x 2 matrix,

(3)

Here, the rows of the matrix are
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The determinant

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).
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The determinant
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2. Given a matrix A € R™" if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)
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The determinant

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A € R™" if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows a/ and ajT of A, then the determinant of the new matrix is
—|A|, for example

In case you are wondering, it is not immediately obvious that a function satisfying the above
three properties exists. In fact, though, such a function does exist, and is unique (which we will
not prove here).
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The Determinant: Properties

- For Ac R™" Al = |AT].
- For A,B € R™", |AB| = |A||B.

- For A€ R™", |A| =0 if and only if A is singular (i.e., non-invertible). (If A is singular then
it does not have full rank, and hence its columns are linearly dependent. In this case, the set
S corresponds to a “flat sheet” within the n-dimensional space and hence has zero volume.)

- For A€ R™" and A non-singular, |A71| = 1/|A|.
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The determinant: formula

Let A R™" A\ € R("=1)x(n=1) he the matrix that results from deleting the ith row and
jth column from A.

The general (recursive) formula for the determinant is

n

Al = Z(—l)iJrjaij\A\i’\j] (forany j€1,...,n)
i=1

= Z(—l)i+ja;j|A\,-7\j] (foranyiel,...,n)
j=1

with the initial case that |A] = aj1 for A € R, If we were to expand this formula completely
for A € R™", there would be a total of n! (n factorial) different terms. For this reason, we hardly
ever explicitly write the complete equation of the determinant for matrices bigger than 3 x 3.
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The determinant: examples

However, the equations for determinants of matrices up to size 3 x 3 are fairly common, and it is

good to know them:

[an]] = an
a1 a2
= a11d22 — d12a21
az1  ax
d11 d12 a3
a1 Ay a3 311322333 1 312323331 1 313321332
—a11823432 — 4124821433 — 4134822431

d31 d32 as3
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Quadratic Forms

Given a square matrix A € R™" and a vector x € R", the scalar value x" Ax is called a
quadratic form. Written explicitly, we see that

n

xT Ax = ZX;(AX),’ = zn:x,- zn:AUXJ = zn:zn:A,-jx,-xJ' .
=1 \j=1

i=1 i=1 j=1
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Quadratic Forms

Given a square matrix A € R™" and a vector x € R", the scalar value x" Ax is called a
quadratic form. Written explicitly, we see that

n

n n n n
xT Ax = ZX,'(AX),’ = ZX,‘ g Aixi | = Z ZA,'J'X,'XJ' .
i—1 i—1 =1 i—1 j—1

We often implicitly assume that the matrices appearing in a quadratic form are symmetric.

1 1
xTAx = (xTA)T =xTATx =xT <2A + 2AT> X,
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Positive Semidefinite Matrices

A symmetric matrix A € S” is:

- positive definite (PD), denoted A > 0 if for all non-zero vectors x € R", xT Ax > 0.
- positive semidefinite (PSD), denoted A > 0 if for all vectors x" Ax > 0.

- negative definite (ND), denoted A < 0 if for all non-zero x € R", xT Ax < 0.

- negative semidefinite (NSD), denoted A < 0 ) if for all x € R", xT Ax < 0.

- indefinite, if it is neither positive semidefinite nor negative semidefinite — i.e., if there
exists x1,xo € R" such that xlTAxl > 0 and szsz < 0.
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Positive Semidefinite Matrices

- One important property of positive definite and negative definite matrices is that they are
always full rank, and hence, invertible.

- Given any matrix A € R™*" (not necessarily symmetric or even square), the matrix
G = AT A (sometimes called a Gram matrix) is always positive semidefinite. Further, if
m > n and A is full rank, then G = AT A is positive definite.
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Eigenvalues and Eigenvectors

Given a square matrix A € R"*", we say that A € C is an eigenvalue of A and x € C" is the
corresponding eigenvector if

Ax = Ax, x#0.

Intuitively, this definition means that multiplying A by the vector x results in a new vector that
points in the same direction as x, but scaled by a factor \.
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Eigenvalues and Eigenvectors

We can rewrite the equation above to state that (), x) is an eigenvalue-eigenvector pair of A if,
(M —A)x=0, x#0.

But (A — A)x = 0 has a non-zero solution to x if and only if (Al — A) has a non-empty
nullspace, which is only the case if (Al — A) is singular, i.e.,

(A = A)| = 0.
We can now use the previous definition of the determinant to expand this expression |(A/ — A)|

into a (very large) polynomial in A, where X\ will have degree n. It's often called the characteristic
polynomial of the matrix A.
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Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

trA = zn: )\,’.
i=1
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Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

trA = Zn: )\,'.
i=1

The determinant of A is equal to the product of its eigenvalues,

A= >
i=1

The rank of A is equal to the number of non-zero eigenvalues of A.

Suppose A is non-singular with eigenvalue A\ and an associated eigenvector x. Then 1/\ is
an eigenvalue of A~! with an associated eigenvector x, i.e., A~1x = (1/)\)x.
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Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

trA = Zn: )\,'.
i=1

The determinant of A is equal to the product of its eigenvalues,

A= >
i=1

The rank of A is equal to the number of non-zero eigenvalues of A.

Suppose A is non-singular with eigenvalue A\ and an associated eigenvector x. Then 1/\ is
an eigenvalue of A~! with an associated eigenvector x, i.e., A~1x = (1/)\)x.

- The eigenvalues of a diagonal matrix D = diag(di, ... d,) are just the diagonal entries
dr, ... dy

40 /57



Eigenvalues and Eigenvectors of Symmetric Matrices

Throughout this section, let's assume that A is a symmetric real matrix (i.e., AT = A). We have
the following properties:

1. All eigenvalues of A are real numbers. We denote them by A1, ..., \,.
2. There exists a set of eigenvectors u, ..., u, such that (i) for all /, u; is an eigenvector with
eigenvalue \; and (ii) ui, ..., u, are unit vectors and orthogonal to each other.
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New Representation for Symmetric Matrices

- Let U be the orthonormal matrix that contains u;'s as columns:
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New Representation for Symmetric Matrices

- Let U be the orthonormal matrix that contains u;'s as columns:

U=|u w - u,
. |

- Let A = diag(A1,...,A\n) be the diagonal matrix that contains A1,..., A,.
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New Representation for Symmetric Matrices

- Let U be the orthonormal matrix that contains u;'s as columns:

U=|u w - u,
. |

- Let A = diag(A1,...,A\n) be the diagonal matrix that contains A1,..., A,.

- We can verify that

| | | | \ |
AU:[Aul Aupg -+ Aup | = | Mur Aaua oo Au, | = Udiag(Aq, ...

,An) = UA
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New Representation for Symmetric Matrices

- Let U be the orthonormal matrix that contains u;'s as columns:

U=|u w - u,
. |

- Let A = diag(A1,...,A\n) be the diagonal matrix that contains A1,..., A,.

We can verify that

] | | | |
AU = [ Aup Auy -+ Aup | = | Mun doua -0 Au, | = Udiag(Ny, ..., A,) = UA
. | | | |

Recalling that orthonormal matrix U satisfies that UUT = I, we can diagonalize matrix A:
A=AUUT = UNUT (4)
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Background: representing vector w.r.t. another basis.

- Any orthonormal matrix U= | u1 wup --- u, | defines a new basis of R".

- For any vector x € R" can be represented as a linear combination of vy, ..

coefficient X1, ..., Xn:
x =X+ -+ Xpup, = UX
- Indeed, such X uniquely exists

x=Us=sUx=%

., Uy with

In other words, the vector X = U ' x can serve as another representation of the vector x

w.r.t the basis defined by U.
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“Diagonalizing” matrix-vector multiplication.

- Left-multiplying matrix A can be viewed as left-multiplying a diagonal matrix w.r.t the basic
of the eigenvectors.
- Suppose x is a vector and X is its representation w.r.t to the basis of U.

- Let z = Ax be the matrix-vector product.
- the representation z w.r.t the basis of U:

A1k
AaXo
2=U"z=U"Ax=UTUNU"x =Nk =
AnXn
- We see that left-multiplying matrix A in the original space is equivalent to left-multiplying

the diagonal matrix A w.r.t the new basis, which is merely scaling each coordinate by the
corresponding eigenvalue.
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“Diagonalizing” matrix-vector multiplication.

Under the new basis, multiplying a matrix multiple times becomes much simpler as well. For
example, suppose g = AAAx.

gy

A3
G=UTqg=UTAx = UTUNUTUNUTUNUTx = N3 = | “27°
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“Diagonalizing” quadratic form.

As a directly corollary, the quadratic form x7 Ax can also be simplified under the new basis

xTAx = xTUNUTx = &A% =) " \i&?
i=1

(Recall that with the old representation, x T Ax = > o1 j=1 XiXjAjj involves a sum of n? terms
instead of n terms in the equation above.)
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The definiteness of the matrix A depends entirely on the sign of its
eigenvalues

1. If all A\; > 0, then the matrix A s positivedefinite because xT Ax = Y7, A\;£? > 0 for any
£#0.1
2. If all \; > 0, it is positive semidefinite because xT Ax = "7, \;&? > 0 for all %.

3. Likewise, if all A; < 0 or \; <0, then A is negative definite or negative semidefinite
respectively.

!Note that £ # 0 < x # 0.
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"Diagonalizing” application

- For a matrix A € S”, consider the following maximization problem,

n
maXycpn X Ax = Z A\i%?  subject to ||x||3 =1
i=1
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"Diagonalizing” application
- For a matrix A € S”, consider the following maximization problem,
n
maXycpn X Ax = Z A\i%?  subject to ||x||3 =1
i=1

- Assuming the eigenvalues are ordered as \; > A\ > ... > \,, the optimal value of this
optimization problem is \; and any eigenvector u; corresponding to \p is one of the
maximizers.
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"Diagonalizing” application

- For a matrix A € S”, consider the following maximization problem,

n
maXycpn X Ax = Z A\i%?  subject to ||x||3 =1
i=1

- We can show this by using the diagonalization technique: Note that ||x||2 = [|X]2.

n
maxgepn X' AR = Z A\i%?  subject to ||R]|3 =1
i=1

48 /57



"Diagonalizing” application

- For a matrix A € S”, consider the following maximization problem,

n
maXycpn X Ax = Z A\i%?  subject to ||x||3 =1
i=1

- Then, we have that the objective is upper bounded by A;:

n n
STAR =) N7 <> & =M
i=1 i=1

Moreover, setting X = | . | achieves the equality in the equation above, and this
0
corresponds to setting x = uy.
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Matrix Calculus
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The Gradient

Suppose that f : R™*" — R is a function that takes as input a matrix A of size m x n and

returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of partial
derivatives, defined as:

Of(A)  Of(A)  Of(A)

8A1 BA]_ aAl

If(A)  of(Ad)  Of(A

VAf(A) c RMXN — 0A21 0A22 0A2,
GfiA) 8fiA) . .. 8f&A)

6Am1 8Am2 8Amn

i.e., an m X n matrix with
Of(A)
f(A); =
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The Gradient

Note that the size of Vaf(A) is always the same as the size of A. So if, in particular, A is just a

vector x € R”,

Vxf(x)

Of (x)
Ox1
Of (x)
Ox2

of (x
Oxn

N
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The Gradient

Note that the size of Vaf(A) is always the same as the size of A. So if, in particular, A is just a

vector x € R”,
Of (x)
Ox1
9 (x)

Vif(x)=| %

of (x
Oxn

N

It follows directly from the equivalent properties of partial derivatives that:

- Vx(f(x) + 8(x)) = Vif(x) + Vg (x).
- For t € R, V4 (t f(x)) = tV,f(x).

51/57



The Hessian

Suppose that £ : R" — R is a function that takes a vector in R” and returns a real number.
Then the Hessian matrix with respect to x, written V2f(x) or simply as H is the n x n matrix
of partial derivatives,

m 0%f(x)  03%f(x) 9%f(x) 7
% Ox10x2  Ox10xn
9%f(x) 0%f(x) L 0?%f(x)
V)%f(x) e Rnxn — 8X2.6X1 8X22 6X2.8X,,
8%f(x)  9*f(x) 9?f(x)
| Ox,0x1  OxpnOxa2 oxz
In other words, V2f(x) € R™", with
92F(x)

(VEF(x); =

Note that the Hessian is always symmetric, since
0°f(x) B 0°f(x)
Oxi0xj  OxjOx;

Oxi0x;
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Gradients of Linear Functions

For x € R”, let f(x) = b x for some known vector b € R”. Then

f(x) = z”: bix;
i=1

SO
of(x) 9 B
Oxk  Ox Z,__l bixi = i

From this we can easily see that Vb x = b. This should be compared to the analogous
situation in single variable calculus, where 9/(0x) ax = a.
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Gradients of Quadratic Function
Now consider the quadratic function f(x) = x" Ax for A € S". Remember that

n n
f(x) = Z Z AjjXiX;.
i=1 j=1
To take the partial derivative, we'll consider the terms including xx and x? factors separately:

of (
R PR WL

i=1 j=1
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Gradients of Quadratic Function
Now consider the quadratic function f(x) = x" Ax for A € S". Remember that

f(x) = Z Z AjjXiX;.

i=1 j=1

To take the partial derivative, we'll consider the terms including xx and x? factors separately:

of
R D)W

i=1 j=1
8
= — Z Z Aijxixj + Z Ajexixi + Z AkJXkXJ + Akak
Xk | izk ik i~k %k
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Gradients of Quadratic Function
Now consider the quadratic function f(x) = x" Ax for A € S". Remember that

f(x) = Z Z AjjXiX;.

i=1 j=1

To take the partial derivative, we'll consider the terms including xx and x? factors separately:

of
R D)W

i=1 j=1
8
= — Z Z Aijxixj + Z Ajexixi + Z AkJXkXJ + Akak
Xk | izk ik i~k %k
= Z Aikxi + Z AkjXj + 2A kX
i+k j#k
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Gradients of Quadratic Function
Now consider the quadratic function f(x) = x" Ax for A € S". Remember that

f(x) = Z Z AjjXiX;.

i=1 j=1

To take the partial derivative, we'll consider the terms including xx and x? factors separately:

of 0 =
T = a2 A

i=1 j=1
0
= 87 Z Z A,'J'X,‘Xj + Z A,'kX,'Xk + Z Aijka + Akkx,f
k| itk j#k i~k %k
= Z Aikxi + Z AkjXj + 2A kX
i+k j#k

n n n
= Z Aixi + Z Akixj = 2 Z Axixi,
i=1 j=1 i=1
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Hessian of Quadratic Functions

Finally, let's look at the Hessian of the quadratic function f(x) = x" Ax
In this case,

82f(X) o 0 [Gf(x)] _ i lziAgiXi] = 2A2k = 2Akﬁ-

Ox0x;  Oxk | Ox N

Therefore, it should be clear that V2xT Ax = 2A, which should be entirely expected (and again
analogous to the single-variable fact that 92/(0x?) ax? = 2a).
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Recap

- vaTX - b
- V2b'x=0
- Vx| Ax = 2Ax (if A symmetric)

- V2xT Ax = 2A (if A symmetric)
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Matrix Calculus Example: Least Squares

- Given a full rank matrices A € R™*" and a vector b € R™ such that b & R(A), we want
to find a vector x such that Ax is as close as possible to b, as measured by the square of
the Euclidean norm ||Ax — b||3.
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Matrix Calculus Example: Least Squares

- Given a full rank matrices A € R™*" and a vector b € R™ such that b & R(A), we want
to find a vector x such that Ax is as close as possible to b, as measured by the square of
the Euclidean norm ||Ax — b||3.

- Using the fact that ||x||3 = x " x, we have

|Ax — b||3 = (Ax — b)T(Ax — b) = xTATAx —2bT Ax + b" b
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Matrix Calculus Example: Least Squares

- Given a full rank matrices A € R™*" and a vector b € R™ such that b & R(A), we want
to find a vector x such that Ax is as close as possible to b, as measured by the square of
the Euclidean norm ||Ax — b||3.

- Using the fact that ||x||3 = x " x, we have

|Ax — b||3 = (Ax — b)T(Ax — b) = xTATAx —2bT Ax + b" b

- Taking the gradient with respect to x we have:

Vi(xTATAx —2bTAx +b"b) = V.xTATAx —V,2bT Ax + V,b"b
= 2ATAx—2ATb
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Matrix Calculus Example: Least Squares

Given a full rank matrices A € R™*" and a vector b € R™ such that b ¢ R(A), we want
to find a vector x such that Ax is as close as possible to b, as measured by the square of
the Euclidean norm ||Ax — b||3.

Using the fact that ||x||3 = x"x, we have

|Ax — b||3 = (Ax — b)T(Ax — b) = xTATAx —2bT Ax + b" b

Taking the gradient with respect to x we have:
Vi(xTATAx —2bTAx +b"b) = V.xTATAx —V,2bT Ax + V,b"b
= 2ATAx—2ATb
- Setting this last expression equal to zero and solving for x gives the normal equations

x=(ATA)1ATh
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